Opening up Echo Chambers via Optimal Content Recommendation

A. Vendeville ${ }^{1,2}$, A. Giovanidis ${ }^{3}$, E. Papanastasiou ${ }^{3}$ and B. Guedj ${ }^{1,2}$
${ }^{1}$ University College London, ${ }^{2}$ Inria, ${ }^{3}$ Sorbonne University

$$
\text { April 25, } 2023
$$

What is an echo chamber?

Echo chambers

Weber et al.(2020). \#ArsonEmergency and Australia's "Black Summer": Polarisation and Misinformation on Social Media. MISDOOM 2020.
https://doi.org/10.1007/978-3-030-61841-4_11

Echo chambers

Garimella et al.(2016). Quantifying Controversy in Social Media. WSDM '16. https://doi.org/10.1145/2835776.2835792.

Consequences...

- opinion polarisation
- extremism
- fake news
- conspiracy theories

Consequences...

- opinion polarisation
- extremism
- fake news
- conspiracy theories

Need to open up the echo chambers!

The \#Elysée2017fr dataset

Fraisier, O., Cabanac, G., Pitarch, Y., Besançon, R., Boughanem, M.: \#Elysée2017fr: The 2017 French Presidential Campaign on Twitter. In: Proceedings of the 12th International AAAI Conference on Web and Social Media (2018).

The \#Elysée2017fr dataset

Fraisier, O., Cabanac, G., Pitarch, Y., Besançon, R., Boughanem, M.: \#Elysée2017fr: The 2017 French Presidential Campaign on Twitter. In: Proceedings of the 12th International AAAI Conference on Web and Social Media (2018).

- 2.4 M tweets
- 7.7 M retweets
- 22,853 profiles
- November 2016 - May 2017
- known political affiliations FI,PS,EM,LR,FN

The \#Elysée2017fr dataset

Fraisier, O., Cabanac, G., Pitarch, Y., Besançon, R., Boughanem, M.: \#Elysée2017fr: The 2017 French Presidential Campaign on Twitter. In: Proceedings of the 12th International AAAI Conference on Web and Social Media (2018).

- 2.4 M tweets
- 7.7 M retweets
- 22,853 profiles
- November 2016 - May 2017
- known political affiliations FI,PS,EM,LR,FN

Followers graph: 8,277 users and 975,168 edges

Followers graph

Retweet graph

Echo chambers in \#Elysée2017fr

Distribution of content users are exposed to.

Echo chambers in \#Elysée2017fr

Distribution of content users are exposed to.
Not surprising...

Quantifying content diversity

For user n :

$$
\begin{equation*}
\Phi_{n}=\frac{S}{S-1} \sum_{s=1}^{S} p_{s}^{(n)}\left(1-p_{s}^{(n)}\right) \tag{1}
\end{equation*}
$$

$p_{s}^{(n)}$: average proportion of content from party s on the newsfeed of n.
$S=5$: number of parties.

Quantifying content diversity

For user n :

$$
\begin{equation*}
\Phi_{n}=\frac{S}{S-1} \sum_{s=1}^{S} p_{s}^{(n)}\left(1-p_{s}^{(n)}\right) \tag{1}
\end{equation*}
$$

$p_{s}^{(n)}$: average proportion of content from party s on the newsfeed of n.
$S=5$: number of parties.

How to increase Φ_{n} with recommendations?

We can take advantage of the diffusion of content amongst users to make "smarter" recommendations:
\longrightarrow Need for a diffusion model.

Diffusion model

- Strongly connected network of N users.
- Self-posting rates $\lambda_{s}^{(n)}$.
- Re-posting rates $\mu^{(n)}$.
- Newsfeeds of finite size.
- Posts appear on the newsfeeds of followers and replace a random item.
- Repost uniformly at random amongst newsfeed items.

Giovanidis, A., Baynat, B., Magnien, C., Vendeville, A.: Ranking online social users by their influence. IEEE/ACM Transactions on Networking 29(5), 2198-2214 (2021)

User n point of view

Giovanidis, A., Baynat, B., Magnien, C., Vendeville, A.: Ranking online social users by their influence. IEEE/ACM Transactions on Networking 29(5), 2198-2214 (2021)

Empirical evaluation

Weibo Ranking ($\Psi^{e m u}$ VS $\Psi^{\text {model }}$)

Giovanidis, A., Baynat, B., Magnien, C., Vendeville, A.: Ranking online social users by their influence. IEEE/ACM Transactions on Networking 29(5), 2198-2214 (2021)

Balance of opinions on newsfeeds

At equilibrium $p_{s}^{(1)}, \ldots, p_{s}^{(N)}$ are solution of the following linear system:

$$
\begin{align*}
& \text { for } n=1, \ldots, N, \\
& \qquad p_{s}^{(n)} \sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right)=\sum_{k \in \mathcal{L}^{(n)}}\left(\lambda_{s}^{(k)}+\mu^{(k)} p_{s}^{(k)}\right) . \tag{2}
\end{align*}
$$

- Assuming the user graph is strongly connected and at least one user has $\lambda>0$, the system has a unique solution.
- Computed via power iteration.

Empirical evaluation

With preferential reposting (simulation)

Method to increase diversity

Goal: maximise average diversity of content on the newsfeeds.

Method to increase diversity

Goal: maximise average diversity of content on the newsfeeds.

Method: insert posts into the newsfeeds (recommendation).

Method to increase diversity

Goal: maximise average diversity of content on the newsfeeds.
Method: insert posts into the newsfeeds (recommendation).

- $x_{s}^{(n)}$: rate at which we insert posts from party s into n 's newsfeed
- B budget: no more than a proportion B of recommended content on newsfeeds

Method to increase diversity

Goal: maximise average diversity of content on the newsfeeds.
Method: insert posts into the newsfeeds (recommendation).

- $x_{s}^{(n)}$: rate at which we insert posts from party s into n 's newsfeed
- B budget: no more than a proportion B of recommended content on newsfeeds

Objective: find $x_{s}^{(n)}$ for all n, s to maximise average diversity under budget B.

Optimisation problem

$$
\underset{x, p}{\operatorname{argmax}} \frac{1}{N} \sum_{n} \Phi_{n}
$$

s.t. for all n, s :

$$
\begin{aligned}
& \underbrace{\frac{p_{s}^{(n)}}{1-B} \sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right)=x_{s}^{(n)}+\sum_{k \in \mathcal{L}^{(n)}}\left(\lambda_{s}^{(k)}+\mu^{(k)} p_{s}^{(k)}\right)}_{\text {model equation }} \\
& \underbrace{\sum_{s} x_{s}^{(n)}=\frac{B}{1-B} \sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right)}_{\text {budget constraint }} \\
& x_{s}^{(n)}, p_{s}^{(n)} \geq 0
\end{aligned}
$$

Optimisation problem

- quadratic objective with linear constraints
- 83 K variables
- 50 K constraints
- Gurobi solver (barrier algorithm)
- runtime ~ 10 min

Now let's see the results...

Further research

- Model accuracy vs empirical values...
- Backfire effect: limit the amount of cross-cutting content?
- enforce equality in the share of recommendations dedicated to each party
- other methods: content filtering, users recommendations...
- This can also be used to promote a specific party!

Thank you!

Budget constraint

$$
\begin{align*}
\sum_{s} x_{s}^{(n)} & =B\left(\sum_{s} x_{s}^{(n)}+\sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right)\right) \tag{3}\\
\Longrightarrow \sum_{s} x_{s}^{(n)} & =\frac{B}{1-B} \sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right) \tag{4}
\end{align*}
$$

Model equations

$$
\begin{align*}
p_{s}^{(n)}\left(\sum_{s} x_{s}^{(n)}+\sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right)\right) & =x_{s}^{(n)}+\sum_{k \in \mathcal{L}^{(n)}}\left(\lambda_{s}^{(k)}+\mu^{(k)} p_{s}^{(k)}\right) \tag{5}\\
\Longrightarrow \frac{p_{s}^{(n)}}{1-B} \sum_{k \in \mathcal{L}^{(n)}}\left(\lambda^{(k)}+\mu^{(k)}\right) & =x_{s}^{(n)}+\sum_{k \in \mathcal{L}^{(n)}}\left(\lambda_{s}^{(k)}+\mu^{(k)} p_{s}^{(k)}\right) \tag{6}
\end{align*}
$$

