Echo chambers and opinion diversity in the Voter Model: towards regulation strategies for social networks

Antoine Vendeville

University College London

November 7, 2023

Context

Discord in the Voter Model

Echo chambers in polarised networks

Steering the echo chamber effect

Echo chambers: Australian conspiracies

Weber et al. (2020). #ArsonEmergency and Australia's "Black Summer": Polarisation and Misinformation on Social Media. MISDOOM 2020.

Echo chambers: American societal issues

Cinelli et al. (2021). The Echo Chamber Effect on Social Media. PNAS.

Consequences

- polarisation
- fake news
- conspiracy theories
- radicalisation

Accessible opinion diversity: variance of opinions agents are exposed to.

Accessible opinion diversity: variance of opinions agents are exposed to.

VM: computable from opinion distributions (Masuda, 2015)

Accessible opinion diversity: variance of opinions agents are exposed to.

VM: computable from opinion distributions (Masuda, 2015)

Echo chamber effect: proportion of congruent opinions agents are exposed to.

Accessible opinion diversity: variance of opinions agents are exposed to.

VM: computable from opinion distributions (Masuda, 2015)

Echo chamber effect: proportion of congruent opinions agents are exposed to.

VM: how to compute disagreement?

Context

Discord in the Voter Model

Echo chambers in polarised networks

Steering the echo chamber effect

The Voter Model

. . .

- Agent set $\mathcal{N} = \{1, \dots, N\}$
- Directed, weighted network: $j \xrightarrow{w_{ij}} i$
- Opinion set $S = \{1, \ldots, S\}$
- Exogenous influences $z_i^{(s)}$ for $i \in \mathcal{N}, s \in \mathcal{S}$

Exogenous: inner bias, recommender system, political campaign,

Dynamics and convergence

When the clock of i rings:

- ▶ with probability *w_{ij}*, copy *j*'s opinion
- with probability $z_i^{(s)}$, adopt s

Dynamics and convergence

When the clock of i rings:

- with probability w_{ij}, copy j's opinion
- with probability $z_i^{(s)}$, adopt s

If each node *i* can be reached by a node *j* with $z_j^{(s)} > 0$ then there is a unique state of equilibrium. We assume so.

Distribution of opinions at equilibrium

Distribution of opinions at equilibrium

From Masuda (2015): $x_i^{(s)} = \sum_{j \in \mathcal{N}} w_{ij} x_j^{(s)} + z_i^{(s)}, \qquad (1)$ where $x_i^{(s)} \triangleq P(\sigma_i = s).$

Distribution of opinions at equilibrium

From Masuda (2015): $x_{i}^{(s)} = \sum_{j \in \mathcal{N}} w_{ij} x_{j}^{(s)} + z_{i}^{(s)}, \qquad (1)$ where $x_{i}^{(s)} \triangleq P(\sigma_{i} = s).$

Interpretation (Yildiz et al., 2013)

Artificial node n_s with opinion s and edges n_s → z_i^(s) i.
 x_i^(s) is the probability that a (backward) random walk initiated at i reaches n_s before any other n_{s'}.

Discord probabilities

How to compute
$$\rho_{ij} \triangleq P(\sigma_i \neq \sigma_j)$$
 ?

Special case: independent opinions

Opinions of i and j are independent if either:

- $\triangleright \sigma_i$ or σ_j is constant, or
- No path between *i* and *j* and no common ancestor.

Special case: independent opinions

Opinions of i and j are independent if either:

- $\triangleright \sigma_i$ or σ_j is constant, or
- No path between *i* and *j* and no common ancestor.

 \implies discord easy to compute!

Special case: independent opinions

Opinions of i and j are independent if either:

- $\triangleright \sigma_i$ or σ_j is constant, or
- No path between *i* and *j* and no common ancestor.

\implies discord easy to compute!

Independent case

$$\rho_{ij} = \sum_{s \in S} x_i^{(s)} (1 - x_j^{(s)}).$$
⁽²⁾

General case

Not as simple...

General case

Not as simple...

General case

Not as simple...

• Linear system $\simeq N^2$.

Unique solution, thanks to the earlier assumption.

Importance of dependencies

(a) Path $i \rightarrow j$.

(b) Common ancestor k.

Eq. 3 (general case) $\implies \rho_{ij} = 1/4$, Eq. 2 (independent case) $\implies \rho_{ij} = 1/2$.

Stronger dependency... higher difference!

Generalised active links density

Average discord: a simple mean is not enough...

- heterogenous edge weights
- Iong-range influences

Generalised active links density

Average discord: a simple mean is not enough...

- heterogenous edge weights
- Iong-range influences

GALD

$$\langle \rho \rangle = \frac{\sum_{i < j} (w_{ij}^{\infty} + w_{ji}^{\infty}) \rho_{ij}}{\sum_{i < j} (w_{ij}^{\infty} + w_{ji}^{\infty})}.$$
(4)

where w_{ij}^{∞} is the (i,j)-th component of the matrix exponential

$$e^{W} = \sum_{k=1}^{\infty} \frac{1}{k!} W^{k}.$$
(5)

Context

Discord in the Voter Model

Echo chambers in polarised networks

Steering the echo chamber effect

Metrics of interest in the Voter Model

Echo chamber effect

Proportion of congruent opinion agent *i* sees:

$$\Gamma_{i} = \frac{\sum_{j \in \mathcal{N}} w_{ij} (1 - \rho_{ij})}{\sum_{j \in \mathcal{N}} w_{ij}}.$$
 (6)

Metrics of interest in the Voter Model

Echo chamber effect

Proportion of congruent opinion agent *i* sees:

$$\Gamma_{i} = \frac{\sum_{j \in \mathcal{N}} w_{ij} (1 - \rho_{ij})}{\sum_{j \in \mathcal{N}} w_{ij}}.$$
 (6)

Accessible opinion diversity

Variance of opinions agent *i* sees:

$$\Phi_i = \frac{S}{S-1} \sum_{s \in S} y_i^{(s)} (1 - y_i^{(s)}).$$
 (7)

where
$$y_i = \sum_{j \in \mathcal{N}} w_{ij} x_j / \sum_{j \in \mathcal{N}} w_{ij}$$
.

Connections with different minds does not mean more diverse opinions...

Average opinion diversity

- ► *N* = 100
- Community C0 biased towards opinion 0
- Community C1 biased towards opinion 1
- 10% intra-group connections

...but there is more hope for the echo chamber effect!

- ► *N* = 100
- Community C0 biased towards opinion 0
- Community C1 biased towards towards opinion 1
- 10% intra-group connections

Average echo chamber effect

Context

Discord in the Voter Model

Echo chambers in polarised networks

Steering the echo chamber effect

How to?

Find opinion recommendation rates to maximise the average Opinion Diversity.

How to?

Find opinion recommendation rates to maximise the average Opinion Diversity.

Macroscopical perspective

Homogeneous networks with global information (subreddit, FB pages, ...)

Setting

- Complete network.
- ► Two possible opinions {0,1}.
- ▶ Bias $z^{(0)} > 0, z^{(1)} = 0$ for everyone. \Rightarrow **Pure echo chamber**

Setting

- Complete network.
- ► Two possible opinions {0,1}.
- ▶ Bias $z^{(0)} > 0, z^{(1)} = 0$ for everyone. ⇒ **Pure echo chamber**

Objective

Find the optimal recommendation rate $z^{(1)}$ that maximises the average Accessible Opinion Diversity:

$$\langle \Phi \rangle = \frac{4z^{(0)}z^{(1)}}{[z^{(0)} + z^{(1)}]^2}.$$
 (8)

We must be careful...

Don't flood users with recommendations!

We require $z^{(1)} \leq B$ for a chosen *B*.

We must be careful...

Don't flood users with recommendations!

We require $z^{(1)} \leq B$ for a chosen *B*.

Backfire effect: too much incongruent opinions can reinforce prior beliefs!

Recommendation rate $z^{(1)} \implies z^{(0)}$ incremented by $\alpha z^{(1)}$, with $0 < \alpha < 1$.

The macroscopical perspective can increase opinion diversity and reduce the echo chamber effect

 $B = 10^{-1}$.

Also works with lower budgets

 $B = 10^{-2}$.

What is happening exactly?

Figure: Optimal recommendation rate z_1 for B = 0.1, 0.5.

Thank you!

References

- M. Cinelli, G. De Francisci Morales, A. Galeazzi, W. Quattrociocchi, and M. Starnini. The echo chamber effect on social media. *Proc. Natl. Acad. Sci.*, 118(9), 2021.
- N. Masuda. Opinion control in complex networks. New J. Phys., 17(3), 2015.
- D. Weber, M. Nasim, L. Falzon, and L. Mitchell. #ArsonEmergency and Australia's "Black Summer": Polarisation and misinformation on social media. In *DisOOM*, pages 159–173, 2020.
- M. E. Yildiz, A. Ozdaglar, D. Acemoglu, A. Saberi, and A. Scaglione. Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput., 1(4), 2013.