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What is an echo chamber?
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Echo chambers

Weber et al.(2020). #ArsonEmergency and Australia’s “Black Summer”: Polarisation and
Misinformation on Social Media. MISDOOM 2020.
https://doi.org/10.1007/978-3-030-61841-4_11

https://doi.org/10.1007/978-3-030-61841-4_11
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Echo chambers

Garimella et al.(2016). Quantifying Controversy in Social Media. WSDM ’16.
https://doi.org/10.1145/2835776.2835792.

https://doi.org/10.1145/2835776.2835792
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Consequences...

▶ opinion polarisation

▶ extremism

▶ fake news

▶ conspiracy theories

Need to open up the echo chambers!
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The #Elysée2017fr dataset

Fraisier, O., Cabanac, G., Pitarch, Y., Besançon, R.,
Boughanem, M.: #Elysée2017fr: The 2017 French Presi-
dential Campaign on Twitter. In: Proceedings of the 12th
International AAAI Conference on Web and Social Media
(2018).

▶ 2.4M tweets

▶ 7.7M retweets

▶ 22,853 profiles

▶ November 2016 - May 2017

▶ known political affiliations FI,PS,EM,LR,FN

Followers graph: 8,277 users and 975,168 edges
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Followers graph Retweet graph



8/23

Echo chambers in #Elysée2017fr
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Quantifying content diversity

For user n:

Φn =
S

S − 1

S∑
s=1

p(n)s (1− p(n)s ). (1)

p
(n)
s : average proportion of content from party s on the

newsfeed of n.
S = 5: number of parties.

How to increase Φn with recommendations?
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Diffusion model

▶ Strongly connected network of N users.

▶ Self-posting rates λ
(n)
s .

▶ Re-posting rates µ(n).

▶ Newsfeeds of finite size.

▶ Posts appear on the newsfeeds of followers and replace a
random item.

▶ Repost uniformly at random amongst newsfeed items.

Giovanidis, A., Baynat, B., Magnien, C., Vendeville, A.: Ranking online social users by their
influence. IEEE/ACM Transactions on Networking 29(5), 2198–2214 (2021)
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Balance of opinions on newsfeeds

At equilibrium p
(1)
s , . . . , p

(N)
s are solution of the following linear

system:

for n = 1, . . . , N ,

p(n)s

∑
k∈L(n)

(λ(k) + µ(k)) =
∑

k∈L(n)

(λ(k)
s + µ(k)p(k)s ). (2)

▶ Assuming the user graph is strongly connected and at least
one user has λ > 0, the system has a unique solution.

▶ Computed via power iteration.
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Empirical evaluation
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Method to increase diversity

Goal: maximise average diversity of content on the newsfeeds.

Method: insert posts into the newsfeeds (recommendation).

▶ x
(n)
s : rate at which we insert posts from party s into n’s

newsfeed

▶ B budget: no more than a proportion B of recommended
content on newsfeeds

Objective: find x
(n)
s for all n, s to maximise average diversity

under budget B.
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Optimisation problem

argmax
x,p

1

N

∑
n

Φn

s.t. for all n, s :

p
(n)
s

1−B

∑
k∈L(n)

(λ(k) + µ(k)) = x(n)s +
∑

k∈L(n)

(λ(k)
s + µ(k)p(k)s )

︸ ︷︷ ︸
model equation

,

∑
s

x(n)s =
B

1−B

∑
k∈L(n)

(λ(k) + µ(k))

︸ ︷︷ ︸
budget constraint

,

x(n)s , p(n)s ≥ 0.
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Optimisation problem

▶ quadratic objective with linear constraints

▶ 83K variables

▶ 50K constraints

▶ Gurobi solver (barrier algorithm)

▶ runtime ∼10min
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Now let’s see the results...
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Further research

▶ Model accuracy vs empirical values...

▶ Backfire effect: limit the amount of cross-cutting content?

▶ enforce equality in the share of recommendations dedicated
to each party

▶ other methods: content filtering, users recommendations...
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Model simulation with preferential reposting
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Thank you!
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Budget constraint

∑
s

x(n)s = B

∑
s

x(n)s +
∑

k∈L(n)

(λ(k) + µ(k))

 (3)

=⇒
∑
s

x(n)s =
B

1−B

∑
k∈L(n)

(λ(k) + µ(k)) (4)
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Model equations

p(n)s

∑
s

x(n)s +
∑

k∈L(n)

(λ(k) + µ(k))

 = x(n)s +
∑

k∈L(n)

(λ(k)
s + µ(k)p(k)s )

(5)

=⇒ p
(n)
s

1−B

∑
k∈L(n)

(λ(k) + µ(k)) = x(n)s +
∑

k∈L(n)

(λ(k)
s + µ(k)p(k)s )

(6)


