Towards control of opinion diversity by introducing zealots

into a polarised social group

Antoine Vendeville ${ }^{1}$, Benjamin Guedj ${ }^{1,2}$, Shi Zhou ${ }^{1}$
${ }^{1}$ University College London, ${ }^{2}$ Inria Lille - Nord Europe

Contribution

In the context of the voter model with zealots, we
I. derive a formula for the average opinion at equilibrium on any connected graph,
2. propose a strategy for increasing opinion diversity in a polarised social group.

The Voter Model

I. Social graph with n users.
2. Initial opinions $x_{1}(0), \ldots, x_{n}(0) \in\{0,1\}$.
3. Repeat: wait a time $t \sim \operatorname{Exp}(n)$ then a user chosen uniformly at random adopt the opinion of a neighbour chosen uniformly at random.

Assumptions

- Connected graph,
- z_{0}, z_{1} zealots who never change opinion,
- zealots positions random uniform (we note $Z \sim \mathcal{U}$).

Notation $N_{1}(t)$: number of opinion-I holders at time t.

Example realisation on a complete graph. [Top] no I-zealots, everyone eventually adopts opinion o. [Bottom] zealots in both camps, the system reaches a state of equilibrium where no opinion prevails.

Equilibrium state

Theorem \mathbf{I} For any connected user graph and any z_{0}, z_{1} such that $z_{0}+z_{1}>0$, we have for large enough t

$$
\begin{equation*}
\mathbb{E}_{Z \sim \mathcal{U}} \mathbb{E} N_{1}(t)=n \frac{z_{1}}{z_{0}+z_{1}} \tag{I}
\end{equation*}
$$

Evolution of $N_{1}(t)$ with $n=100, z_{0}=20, z_{1}=40$. Various graph models and parameters. Averaged over soo simulations. Grey lines indicate limiting expectations from (I). Insets show empirical distributions at equilibrium. Nodes in the WS graph all have degree 4 .

Control of opinion diversity

[Context] network with $z_{0}>0, z_{1}=0$ (polarised community), at equilibrium
[Goal] get the proportion of opinion-r holders as close to a target $\lambda \in[0,1]$ as possible,
[Method] we are able to sway the opinion of some of the non-zealots users to turn them into i-zealots...
[Constraint] ... but if we sway z_{1} nodes, a quantity αz_{1} of non-zealots become o-zealots (backfire effect).

Proportion of opinion-1 after backfire

$$
\begin{equation*}
f\left(z_{0}, z_{1}, \alpha\right)=\frac{z_{1}}{\left(1+\alpha z_{1}\right) z_{0}+z_{1}} \tag{2}
\end{equation*}
$$

Optimisation problem

$$
\begin{align*}
& \underset{z_{1}}{\operatorname{argmin}}\left|f\left(z_{0}, z_{1}, \alpha\right)-\lambda\right| \\
& \text { s.t. } z_{1}+\underbrace{\left(1+\alpha z_{1}\right) z_{0}}_{\substack{\text { updated } z_{0} \\
\text { after backfire }}} \leq n \tag{3}
\end{align*}
$$

Solution

$$
z_{1}^{\star}= \begin{cases}\min \left(\frac{\lambda z_{0}}{1-\lambda-\lambda \alpha z_{0}}, \frac{n-z_{0}}{1+\alpha z_{0}}\right) & \text { if } \lambda<(1+\alpha z 0)^{-1} \tag{4}\\ \frac{n-z_{0}}{1+\alpha z_{0}} & \text { otherwise } .\end{cases}
$$

Control of opinion diversity for $n=100$ and various z_{0}, α, λ. [Top] Optimal z_{1}^{\star} function of z_{0}. Before peaks $z_{1}^{\star}=\lambda z_{0} /\left(1-\lambda-\lambda \alpha z_{0}\right)$, after peaks $z_{1}^{\star}=\left(n-z_{0}\right)\left(1+\alpha z_{0}\right) .\left[\right.$ Bottom] Value of objective function $\left|f\left(z_{0}, z_{1}, \alpha\right)-\lambda\right|$.

Contact

Email a.vendeville@ucl.ac.uk
Website https://antoinevendeville.github.io/

